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ABSTRACT

In this paper, we place a left restriction on derivations in CD grammar systems with phrase–
structure grammars. This restriction requires that every production is always applied within
the first k nonterminals in every sentential form, for some k ≥ 1. Under the restriction, these
systems generate only family of context-free languages.

1 INTRODUCTION

The formal language theory has investigated various left restrictions in grammars working in
a context-free way. In ordinary context-free grammars, this restriction has no effect on the
generative power. In terms of regulated context-free grammars, the formal language theory
has introduced o broad variety of leftmost derivation restrictions, many of which effect their
generative power (see [1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 14]). The present paper introduces
new left restriction on CD grammars system which working in t-mode and its components
are phrase-structure grammars. The restriction says that productions are applied within the
first k nonterminals in every sentential form, for some k ≥ 1. CD grammar system under this
restriction can be simulated by push-down automaton.

2 PRELIMINARIES

In this paper, we assume that the reader is familiar with formal language theory (see [15]).

For a set, Q, |Q| denotes the cardinality of Q. For an alphabet, V , V ∗ represents the free monoid
generated by V . The identity of V ∗ is denoted by ε. Set V + = V ∗−{ε}; algebraically, V + is
thus the free semigroup generated by V . For w ∈ V ∗, |w| denotes the length of w, wR denotes
the mirror image of w, sub(w) denotes the set of all substrings of w, and su f (w) denotes the set
of all suffixes of w. For Λ ⊆V ∗, let su f (Λ) = {w ∈ su f (w′) : w′ ∈ Λ}. Analogously, we define
pre f (w) and pre f (Λ). For W ⊆V , occur(w,W ) denotes the number of occurrences of symbols
from W in w.

A finite automaton is a quintuple M = (Q,Σ,δ,q0,F), where Q is a finite set of states, Σ is an
alphabet, q0 ∈ Q is the initial state, δ is a finite set of rules of the form qa → p, where p,q ∈ Q
and a ∈ Σ∪{ε}, F ⊆ Q is a set of final states. A configuration of M is any word from QΣ∗.



For any configuration qay, where q ∈ Q, y ∈ Σ∗ and any qa → p ∈ δ, M makes a move from
configuration qay to configuration py according to qa → p, written as qay ⇒ py [qa → p], or,
simply, qay ⇒ py. If x,y ∈ QΣ∗ and m > 0, then x ⇒m y if there exists a sequence x0 ⇒ x1 ⇒
··· ⇒ xm, where x0 = x and xm = y. Then, we say x ⇒+ y if there exists m > 0 such that
x ⇒m y, and x ⇒∗ y if x = y or x ⇒+ y. If w ∈ Σ∗ and q0w ⇒∗ f , where f ∈ F , then w is
accepted by M, and q0w ⇒∗ f is an acceptance of w in M. The language of M is defined as
L(M) = {w ∈ Σ∗ : q0w ⇒∗ f is an acceptance of w}. Let REG denote the family of regular
languages.

A pushdown automaton is a septuple M = (Q,Σ,Ω,δ,q0,Z0,F), where Q is a finite set of states,
Σ is an alphabet, q0 ∈ Q is the initial state, Ω is a pushdown alphabet, δ is a finite set of
rules of the form Zqa → γp, where p,q ∈ Q, Z ∈ Ω, a ∈ Σ∪{ε}, γ ∈ Ω∗, F is a set of final
states, and Z0 is the initial pushdown symbol. A configuration of M is any word from Ω∗QΣ∗.
For any configuration xAqay, where x ∈ Ω∗, y ∈ Σ∗, q ∈ Q, and any Aqa → γp ∈ δ, M makes
a move from configuration xAqay to configuration xγpy according to Aqa → γp, written as
xAqay ⇒ xγpy [Aqa → γp], or, simply, xAqay ⇒ xγpy. If x,y ∈ Ω∗QΣ∗ and m > 0, then x ⇒m y
if there exists a sequence x0 ⇒ x1 ⇒ ·· ·⇒ xm, where x0 = x and xm = y. Then, we say x⇒+ y if
there exists m > 0 such that x ⇒m y, and x ⇒∗ y if x = y or x ⇒+ y. If w ∈ Σ∗ and Z0q0w⇒∗ f ,
where f ∈ F , then w is accepted by M, and Z0q0w ⇒∗ f is an acceptance of w in M. The
language of M is defined as L(M) = {w ∈ Σ∗ : Z0q0w ⇒∗ f is an acceptance of w}. Let CF
denote the family of context-free languages.

A phrase structure grammar is a quadruple G = (N,T,S,P), where N and T are alphabets such
that N∩T = /0, S ∈ N, and P is a finite set of productions of the form α→ β, where α ∈ N+ and
β ∈ (N∪T )∗. If α → β ∈ P, u = x0αx1, and v = x0βx1, where x0,x1 ∈V ∗, then u ⇒ v [α → β]
in G or, simply, u ⇒ v. Let ⇒+ and ⇒∗ denote the transitive closure of ⇒ and the transitive-
reflexive closure of ⇒, respectively. The language of G is denoted by L(G) and defined as
L(G) = {w ∈ T ∗ : S ⇒∗ w}. Let RE denote the family of recursively enumerable languages.

3 DEFINITIONS

Now, we define derivation restriction discussed in this paper. Let G = (N,T,S,P) be a phrase
structure grammar. Let V = N∪T be the total alphabet of G.

3.1 RESTRICTION

Let l ≥ 1. If there is α → β ∈ P, u = x0αx1, and v = x0βx1, where x0 ∈ T ∗N∗, x1 ∈ V ∗, and
occur(x0α,N) ≤ l, then u l�⇒ v [α → β] in G or, simply, u l�⇒ v. Let l�⇒k denote the k-fold
product of l�⇒, where k ≥ 0. Furthermore, let l�⇒∗ denote the transitive-reflexive closure of

l�⇒.

Restriction says that we can only derivate within first l nonterminals from left. In the next
example we can see derivation sequence under phrase-structure grammar with this restriction.

Example I:
Let l = 3 and G = ({S,A,B,C,D},{a,b},P,S), where P = { S → ABB, AB → aC, AB → aAC,
CB → BBC, BBC → bD, DC → bD, D → ε }.

Then derivation may be:
S l�⇒ ABB[1] l�⇒ aACB[3] l�⇒ aABBC[4] l�⇒ aaACBC[3] l�⇒ aaABBCC[4] l�⇒ aaaCBCC[2]



l�⇒ aaaBBCCC[4] l�⇒ aaabDCC[5] l�⇒ aaabbDC[6] l�⇒ aaabbbD[6] l�⇒ aaabbb[7].

Language generated by G with restriction under l = 3 holds:
3-leftL(G) = {anbn | n ≥ 1}.

In the following section we define cooperating distributed grammar system with restriction de-
fined in this paper. The restriction will be applied on every derivation step through grammar
system. Furthermore, switching among components of grammar system will generate a se-
quence of indexes. This sequence must be string from some control language.

3.2 COOPERATING DISTRIBUTED GRAMMAR SYSTEM

A cooperating distributed grammar system (a CD grammar system for short) is an (n+3)-tuple
Γ = (N,T,S,P1, . . . ,Pn), where N,T are alphabets such that N ∩T = /0, V = N ∪T , S ∈ N, and
Gi = (N,T,S,Pi),1 ≤ i ≤ n is a phrase structure grammar.

Let u ∈V ∗N+V ∗, v ∈V ∗, k ≥ 0. Then, we write u l�⇒k
Pi

v, u h
m◦⇒k

Pi
v, and u m◦⇒k

Pi
v to denote

that u l�⇒k v, u h
m◦⇒k v, and u m◦⇒k v, respectively, was performed by Pi. Analogously, we

write u l�⇒∗
Pi

v, u h
m◦⇒∗

Pi
v, u m◦⇒∗

Pi
v, u l�⇒

+
Pi

v, u h
m◦⇒+

Pi
v, and u m◦⇒+

Pi
v.

Moreover, we write u l�⇒t
Pi

v if u l�⇒
+
Pi

v and there is no w such that v l�⇒Pi
w. Analogously,

we write u h
m◦⇒t

Pi
v and u m◦⇒t

Pi
v.

For a CD grammar system Γ = (N,T,S,P1, . . . ,Pn) and a control language L, we set

l-leftLL
t (Γ) = {w ∈ T ∗ : S l�⇒t

Pi1
w1 l�⇒t

Pi2
. . . l�⇒t

Pip
wp = w,

p ≥ 1,1 ≤ i j ≤ n,1 ≤ j ≤ p, i1i2 . . . ip ∈ L}

3.3 LANGUAGE FAMILY

Let GSs denote the family of all CD grammar systems. Let l ≥ 1. Define the following language
family:

l-leftGSREG
t = {l-leftLL

t (Γ) : Γ ∈ GSs,L ∈ REG}

4 RESULT

This section proves main result with this power-decreasing derivation restriction.

CF = l-leftGSREG
t

Lemma 1.: For every CD grammar system Γ = (N,T,S,P1, . . . ,Pn), every finite automaton M̄
and every l ≥ 1, there is a pushdown automaton M, such that L(M) = l-leftL

L(M̄)
t (Γ).

Proof idea. M simulates t-mode derivations of Γ regulated by M̄ in its state. States of M are
composed of 4 elements. The first element represents first l symbols from the first continu-
ous block of nonterminals. The second element describes a stage of a simulated derivation
step. Third and fourth elements store a state of M̄ and an index of an active component of Γ

determined by M̄.

First, M moves from the start state s0 to state [S,q,s0, i], where S is the start nonterminal of Γ, q
- means M is ready for an application of a production of the active component with index i, s0
is the start state of automaton M̄.



Next step simulates a derivation by rule S → α ∈ Pi such that M puts αR on the stack and
automaton moves from [S,q,s0, i] to [ε,r,s0, i]. Generally, if M is in a state [γ,q,s, i], where
|γ| ≤ l, γ ∈ N∗ and γ l�⇒t

Pi
γ′ then M uses rule [γ,q,s, i]→ (γ)R[ε,r,s, i].

Current state of the automaton M says automaton has to remove terminals from the top of the
stack, that is αBan . . .a1[ε,r,s, i]a1 . . .anω ⇒∗ αB[ε,r,s, i]ω, where B 6∈ T .

If B 6∈ T ∪N, M moves to the finish state and stops of computing. Otherwise, M must remove
first l non-terminals (or fewer if there are not l non-terminals) from the top of the stack. For
example, for αB[A1 . . .Ao,r,s, i]ω ⇒ α[A1 . . .AoB,r,s, i]ω. By this way, αBAo . . .A1[ε,r,s, i] ⇒
αB[A1 . . .Ao,r,s, i] ⇒ αB[A1 . . .Ao,e,s, i], where B ∈ T or B 6∈ N∪T or o = l.

Next, αB[A1 . . .Ao,e,s, i]ω⇒ αB[A1 . . .Ao,e,s′, i′]ω if s = s′, i = i′ and sub(A1 . . .Ao)∩Nle f t(Pi) 6=
/0, or si → i ∈ δ̄.

Now, the automaton M is ready for simulation of next derivation step of Γ.

By this way, push-down automaton can simulate every production of Γ. Proof of this statement
is clear, bat excessively long for the scope of this paper.

5 CONCLUSION

In this paper we defined the derivation restriction on a CD grammar system controlled by some
control language. If we add some type of restriction or control language to GS, generative
power of GS will usually be the same as generative power of origin GS. In spite of components
of grammar systems are phrase-structure grammars, GS with this new restriction and with REG
control language is able to generate CF languages only.
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